
Proposal: Subword Assignment

July 11, 2022

Author: Zachary Yedidia

Design Proposal
The goal in subword assignment is to allow users to assign individual bits of a bit-indexable data type.
It is currently possible to extract a particular bit or range of bits from a UInt (for example), but that
subrange cannot be assigned. Verilog allows subword assignment and so did Chisel 2. It has been
requested repeatedly in Chisel 3.

This change would allow writing Chisel such as:

val io = IO(new Bundle {
val x = Input(UInt(8.W))
val y = Input(UInt(8.W))
val en = Input(Bool())
val out = Output(UInt(8.W))

})

io.out := x
when (io.en) {

io.out(4, 0) := y(4, 0)
}

See zyedidia/circt/subword-assignment for the current implementation in CIRCT.

Proposed solution
This proposal suggests implementing subword assignment as an operation in FIRRTL that is lowered
by an early pass in MFC. This change requires new semantics in the FIRRTL language, a lowering pass
implementation in MFC, and a frontend implementation in Chisel. In order to keep the modification
to FIRRTL minor, only single-bit subword assignments are supported in FIRRTL. Multi-bit subword
assignment can be done by performing multiple single-bit assignments.

It is easier to use a lowering approach rather than convert directly to Verilog’s subword assignment
because direct conversion would require bit-level tracking of integer types to avoid combinational loops.
By lowering to a vector of bits, we can automatically use the vector analysis to do the heavy lifting.

FIRRTL syntax
No changes necessary.

FIRRTL semantics
The index operator [n] is now also supported on values of type UInt, and SInt, only as the destination
of a connection. In such a case, only the nth bit of the value is connected, and all the bits remain
unmodified. The result of v[n] is UInt<1>. In order to perform v[n] <= e, e must be of type UInt<1>.

1

https://github.com/zyedidia/circt/tree/subword-assignment


This only applies when v is of type UInt, or SInt. When used on a Vec, the index operator is a
“subindex”, and when used on an integer type it is a “bitindex.”

Lowering algorithm
At a high-level the lowering algorithm looks for all variables that are subword-assigned. For each such
variable var, it creates a new wire v_var that is a vector UInt<1>[var.width]. Then it makes the
following transformations:

• var <= e becomes v_var[i] <= bits(e, i, i) for all i up to var.width
• var[n] <= e becomes v_var[n] <= e.
• bits(var, hi, lo) becomes cat(v_var[hi], v_var[hi-1], ..., v_var[lo]).

Then it connects the concatenation of the vector wire to the variable (var <= cat(v_var[n],
v_var[n-1], ..., v_var[0]) where n is var.width-1).

See zyedidia/circt/subword-assignment/LowerBitindex.cpp for the implementation.

Lowering examples
The examples use the following ports:

input x : UInt<4>
input y : UInt<1>
input en : UInt<1>
output out : UInt<4>

Example 1

out[0] <= y

transforms to

wire v_out : UInt<1>[4]
node out_T_0 = v_out[0]
node out_T_1 = cat(v_out[1], out_T_0)
node out_T_2 = cat(v_out[2], out_T_1)
node out_T_3 = cat(v_out[3], out_T_2)
out <= out_T_3

v_out[0] <= y

and generates an error saying that out is not fully initialized.

Example 2

out <= x
when en :

out[0] <= y

transforms to

wire v_out : UInt<1>[4]
node out_T_0 = v_out[0]
node out_T_1 = cat(v_out[1], out_T_0)
node out_T_2 = cat(v_out[2], out_T_1)
node out_T_3 = cat(v_out[3], out_T_2)
out <= out_T_3

v_out[0] <= bits(x, 0, 0)
v_out[1] <= bits(x, 1, 1)
v_out[2] <= bits(x, 2, 2)

2

https://github.com/zyedidia/circt/blob/subword-assignment/lib/Dialect/FIRRTL/Transforms/LowerBitindex.cpp


v_out[3] <= bits(x, 3, 3)

when en :
v_out[0] <= y

Example 3

out <= x
out[2] <= y

transforms to

wire v_out : UInt<1>[4]
node out_T_0 = v_out[0]
node out_T_1 = cat(v_out[1], out_T_0)
node out_T_2 = cat(v_out[2], out_T_1)
node out_T_3 = cat(v_out[3], out_T_2)
out <= out_T_3

v_out[0] <= bits(x, 0, 0)
v_out[1] <= bits(x, 1, 1)
v_out[2] <= bits(x, 2, 2)
v_out[3] <= bits(x, 3, 3)
v_out[0] <= y

Example 4

out <= x
out[0] <= bits(out, 1, 1)

transforms to

wire v_out : UInt<1>[4]
node out_T_0 = v_out[0]
node out_T_1 = cat(v_out[1], out_T_0)
node out_T_2 = cat(v_out[2], out_T_1)
node out_T_3 = cat(v_out[3], out_T_2)
out <= out_T_3

v_out[0] <= bits(x, 0, 0)
v_out[1] <= bits(x, 1, 1)
v_out[2] <= bits(x, 2, 2)
v_out[3] <= bits(x, 3, 3)
v_out[0] <= v_out[1]

Example 5

Example 5 uses additional ports:

input en_2 : UInt<1>

out <= x
when en :

out[0] <= y
when en_2 :

out[1] <= y
out[2] <= y

else :
out[1] <= y

out[3] <= y

3



transforms to

wire v_out : UInt<1>[4]
node out_T_0 = v_out[0]
node out_T_1 = cat(v_out[1], out_T_0)
node out_T_2 = cat(v_out[2], out_T_1)
node out_T_3 = cat(v_out[3], out_T_2)
out <= out_T_3

v_out[0] <= bits(x, 0, 0)
v_out[1] <= bits(x, 1, 1)
v_out[2] <= bits(x, 2, 2)
v_out[3] <= bits(x, 3, 3)

when en :
v_out[0] <= y
when en_2:

v_out[1] <= y
v_out[2] <= y

else :
v_out[1] <= y

v_out[3] <= y

Example 6

Example 6 uses different ports.

This example is from the Chisel issue tracker for subword assignment: chipsalliance/chisel3#2541.

input request : UInt<3>
output grant : UInt<3>
output not_granted : UInt<2>

grant[0] <= bits(request, 0, 0)
not_granted[0] <= not(bits(grant, 0, 0))
grant[1] <= and(bits(request, 1, 1), bits(not_granted, 0, 0))
not_granted[1] <= and(not(bits(grant, 1, 1)), bits(not_granted, 0, 0))
grant[2] <= and(bits(request, 2, 2), bits(not_granted, 1, 1))

transforms to

wire v_grant : UInt<1>[3]
node grant_T_0 = v_grant[0]
node grant_T_1 = cat(v_grant[1], grant_T_0)
node grant_T_2 = cat(v_grant[2], grant_T_1)
grant <= grant_T_2

wire v_not_granted : UInt<1>[2]
node not_granted_T_0 = v_not_granted[0]
node not_granted_T_1 = cat(v_not_granted[1], not_granted_T_0)
not_granted <= not_granted_T_1

v_grant[0] <= bits(request, 0, 0)
v_not_granted[0] <= not(v_grant[0])
v_grant[1] <= and(bits(request, 1, 1), v_not_granted[0])
v_not_granted[1] <= and(not(v_grant[1]), v_not_granted[0])
v_grant[2] <= and(bits(request, 2, 2), v_not_granted[1])

4

https://github.com/chipsalliance/chisel3/issues/2541


Note: combinational loops
Here is example 4 shown again:

out <= x
out[0] <= bits(out, 1, 1)

In this case a combinational loop is avoided because the bits operation is transformed into a subindex
on the generated vector wire, and therefore the compiler can determine that out[0] does not affect the
output of bits(out, 1, 1). In order to prevent combinational loops in general, every operator must
be transformed into an equivalent operation on bit vectors. This proposal only implements the special
case of bits. Thus the following would cause a combinational loop:

input x : UInt<4>
input y : UInt<4>
output out : UInt<4>

out <= x
out[0] <= bits(or(out, y), 1, 1)

Even though the or operation performs independently on all bits, the analysis engine operates on a
word level. Since the narrowing is performed after the or operation, the compiler doesn’t realize that
bits 0, 2, and 3 of out don’t affect bit 1 of or(out, y). Since the compiler thinks that out[0] may
have affected bit 1 of or(out, y), connecting that bit to out[0] causes a combinational loop.

This proposal’s implementation only performs special-casing to solve this for bits, which is the most
common cause of combinational loops in subword assignment.

The solution in this case would be to swap the order of the or and the bits:

out <= x
out[0] <= or(bits(out, 1, 1), bits(y, 1, 1))

The full transformation that fixes the previous example (i.e., a special-case that performs the or
operation on each bit individually) would be

input x : UInt<4>
input y : UInt<4>
output out : UInt<4>

out <= x

wire tmp : UInt<4>
tmp[0] <= or(bits(out, 0, 0), bits(y, 0, 0))
tmp[1] <= or(bits(out, 1, 1), bits(y, 1, 1))
tmp[2] <= or(bits(out, 2, 2), bits(y, 2, 2))
tmp[3] <= or(bits(out, 3, 3), bits(y, 3, 3))
out[0] <= bits(tmp, 1, 1)

then this can be transformed using the existing algorithm.

MFC backend
The implementation in MFC creates a new operation BitindexOp, similar to SubindexOp but operating
on integer types instead of vector types. A pass called LowerBitindex will lower all occurrences of
BitindexOp according to the algorithm described above. This pass should be run early in the pipeline.

Chisel frontend
Some changes to Chisel will be needed to support subword assignment. The syntax

v(3, 0) := e

5



will generate the following FIRRTL

v[3] <= bits(e, 3, 3)
v[2] <= bits(e, 2, 2)
v[1] <= bits(e, 1, 1)
v[0] <= bits(e, 0, 0)

Alternative solutions
Full Chisel implementation
Can implement the transform in Chisel, but this adds a lot of complexity to Chisel, which isn’t
architected for performing individual transforms like this.

Pros

• Doesn’t require any change to the FIRRTL spec or MFC.

Cons

• Adds a lot of complexity to Chisel.
• Cannot be updated in the future to produce cleaner Verilog.

Multi-bit subword assignment
Pros

• Generates smaller FIRRTL.
• Allows for generating cleaner Verilog that directly uses Verilog’s multi-bit subword assignment

support.

Cons

• Introduces new syntax into the FIRRTL spec (grammar must be changed).
– x[3:0] <= e?
– bits(x, 3, 0) <= e?
– x <[3:0] e?

• Introduces new questions/inconsistencies in the FIRRTL spec:
– Should it also be possible to do multi-item assignment of Vecs?
– Should it be possible to do multi-bit subword lookup or only assignment?

∗ Syntax: x <= e[3:0]?
∗ Should this also be possible for Vecs?

Alternative lowering algorithm
• Lower directly to Verilog subword assignment instead of transforming.

– Pro: produces cleaner Verilog.
– Con: requires tracking bit-level information on integer types to prevent combinational loops.

• We also considered a different renaming algorithm but it wasn’t as good because it didn’t handle
combinational loops at all.

Future Directions
• Multi-bit subword assignment.
• Lowering directly to Verilog subword assignment.
• Variable-indexed subword assignment.

– The lowering algorithm in this proposal should work without changes for this.

6



– Since subindexes and subaccesses are separate, implementing this would involve creating
a bitaccess operation, and lowering that to a subaccess instead of a subindex during the
lowering pass.

7


	Design Proposal
	Proposed solution
	FIRRTL syntax
	FIRRTL semantics
	Lowering algorithm
	Lowering examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Note: combinational loops
	MFC backend
	Chisel frontend

	Alternative solutions
	Full Chisel implementation
	Pros
	Cons

	Multi-bit subword assignment
	Pros
	Cons

	Alternative lowering algorithm

	Future Directions

