Skip to content

PTB-MR/mrpro

Repository files navigation

MRpro

Python License Coverage Bagde

MR image reconstruction and processing package specifically developed for PyTorch.

Awards

  • 2024 ISMRM QMRI Study Group Challenge, 2nd prize for Relaxometry (T2* and T1)

Main features

  • ISMRMRD support MRpro supports ismrmrd-format for MR raw data.
  • PyTorch All data containers utilize PyTorch tensors to ensure easy integration in PyTorch-based network schemes.
  • Cartesian and non-Cartesian trajectories MRpro can reconstruct data obtained with Cartesian and non-Cartesian (e.g. radial, spiral...) sapling schemes. MRpro automatically detects if FFT or nuFFT is required to reconstruction the k-space data.
  • Pulseq support If the data acquisition was carried out using a pulseq-based sequence, the seq-file can be provided to MRpro and the used trajectory is automatically calculated.
  • Signal models A range of different MR signal models are implemented (e.g. T1 recovery, WASABI).
  • Regularised image reconstruction Regularised image reconstruction algorithms including Wavelet-based compressed sensing or total variation regularised image reconstruction are available.

Examples

In the following we show some code snippets to highlight the use of MRpro. Each code snippet only shows the main steps. A complete working notebook can be found in the provided link.

Simple reconstruction

Read in the data and trajectoy and reconstruct an image by applying a density compensation function and then the adjoint of the Fourier operator and the adjoint of the coil sensitivity operator.

# Read the trajectory from the ISMRMRD file
trajectory = mrpro.data.traj_calculators.KTrajectoryIsmrmrd()
# Load in the Data from the ISMRMRD file
kdata = mrpro.data.KData.from_file(data_file.name, trajectory)
# Perform the reconstruction
reconstruction = mrpro.algorithms.reconstruction.DirectReconstruction.from_kdata(kdata)
img = reconstruction(kdata)

Full example: https://github.com/PTB-MR/mrpro/blob/main/examples/direct_reconstruction.py

Estimate quantitative parameters

Quantitative parameter maps can be obtained by creating a functional to be minimised and calling a non-linear solver such as ADAM.

# Define signal model
model = MagnitudeOp() @ InversionRecovery(ti=idata_multi_ti.header.ti)
# Define loss function and combine with signal model
mse = MSEDataDiscrepancy(idata_multi_ti.data.abs())
functional = mse @ model
[...]
# Run optimization
params_result = adam(functional, [m0_start, t1_start], max_iter=max_iter, lr=lr)

Full example: https://github.com/PTB-MR/mrpro/blob/main/examples/qmri_sg_challenge_2024_t1.py

Pulseq support

The trajectory can be calculated directly from a provided pulseq-file.

# Read raw data and calculate trajectory using KTrajectoryPulseq
kdata = KData.from_file(data_file.name, KTrajectoryPulseq(seq_path=seq_file.name))

Full example: https://github.com/PTB-MR/mrpro/blob/main/examples/pulseq_2d_radial_golden_angle.py

Contributing

Installation for developers

  1. Clone the MRpro repository
  2. Create/select a python environment
  3. Install "MRpro" in editable mode including test dependencies: pip install -e ".[test]"
  4. Setup pre-commit hook: pre-commit install

Recommended IDE and Extensions

We recommend to use Microsoft Visual Studio Code. A list of recommended extensions for VSCode is given in the .vscode/extensions.json

Style

Please have a look at our contributor guide for more information on the structure of the repository, naming conventions and other useful information.